Noisy Adaptive Group Testing: Bounds and Algorithms

نویسنده

  • Jonathan Scarlett
چکیده

The group testing problem consists of determining a small set of defective items from a larger set of items based on a number of possibly-noisy tests, and is relevant in applications such as medical testing, communication protocols, pattern matching, and many more. One of the defining features of the group testing problem is the distinction between the non-adaptive and adaptive settings: In the non-adaptive case, all tests must be designed in advance, whereas in the adaptive case, each test can be designed based on the previous outcomes. While tight information-theoretic limits and near-optimal practical algorithms are known for the adaptive setting in the absence of noise, surprisingly little is known in the noisy adaptive setting. In this paper, we address this gap by providing information-theoretic achievability and converse bounds under a widely-adopted symmetric noise model, as well as a slightly weaker achievability bound for a computationally efficient variant. These bounds are shown to be tight or near-tight in a broad range of scaling regimes, particularly at low noise levels. The algorithms used for the achievability results have the notable feature of only using two or three stages of adaptivity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Group Testing Strategies for Target Detection and Localization in Noisy Environments

This paper studies the problem of recovering a signal with a sparse representation in a given orthonormal basis using as few noisy observations as possible. As opposed to previous studies, this paper models observations which are subject to the type of ‘clutter noise’ encountered in radar applications (i.e., the measurements used influence the observed noise). Given this model, the paper develo...

متن کامل

Novel Impossibility Results for Group-Testing

In this work we prove non-trivial impossibility results for perhaps the simplest non-linear estimation problem, that of Group Testing (GT), via the recently developed Madiman-Tetali inequalities. Group Testing concerns itself with identifying a hidden set of d defective items from a set of n items via t disjunctive/pooled measurements (“group tests”). We consider the linear sparsity regime, i.e...

متن کامل

Improving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase

Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...

متن کامل

Efficient Algorithms for Just-In-Time Scheduling on a Batch Processing Machine

Just-in-time scheduling problem on a single batch processing machine is investigated in this research. Batch processing machines can process more than one job simultaneously and are widely used in semi-conductor industries. Due to the requirements of just-in-time strategy, minimization of total earliness and tardiness penalties is considered as the criterion. It is an acceptable criterion for b...

متن کامل

Efficient Sensor Fault Detection Using Group Testing

When faulty sensors are rare in a network, diagnosing sensors individually is inefficient. This study introduces a novel use of concepts from group testing and Kalman filtering in detecting these rare faulty sensors with significantly fewer number of tests. By assigning sensors to groups and performing Kalman filter-based fault detection over these groups, we obtain binary detection outcomes, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018